Strengthening organizational competitiveness in machine shops using multicriteria and fuzzy methods
DOI:
https://doi.org/10.51896/rilco.v5i17.158Keywords:
Organizational Competitiveness, Machining Shops, Multicriteria and Fuzzy Methods, Stainless SteelAbstract
Decision-making within the material removal manufacturing industry is a process that relies on tools that guarantee its effectiveness when it comes to delivering its productions. On the other hand, there are several new technologies that are currently being combined so that organizational competitiveness can reach the objectives set by entrepreneurs in machine shops. At present, the multicriteria analysis method is one of the instruments that helps engineers and specialists within the factories to define the values of the main factors involved in obtaining parts and pieces with quality and that satisfy the interests of manufacturers in the automotive, aeronautical, aerospace and other industries. The following work analyzes how a better organizational competitiveness was achieved in machining workshops, by using multi-criteria methods (TOPSIS) and Fuzzy uncertainty analysis (FTOPSIS), to determine the best alternatives with the optimal parameters in the manufacture of austenitic stainless-steel parts. In the result it was achieved that the best alternative will be selected where the finished part will take the value of the best surface roughness, this simple organizational action, improves the criterion organizational competitiveness of the workshop, so the proposed hybrid decision making model provides an ideal method with an innovative tool within the organizational system of the machining industry.
References
Denkena, B., Lorenzen, L.-E., Krüger, M., & Schmidt, J. (2012). Simulation Based Detailed Planning for Agile Manufacturing. In Enabling Manufacturing Competitiveness and Economic Sustainability (pp. 512-517). https://doi.org/10.1007/978-3-642-23860-4_84
Erbe, H.-H. (2009). Quality of Service (QoS) of Automation. In Springer Handbook of Automation (pp. 715-733). https://doi.org/10.1007/978-3-540-78831-7_41
Gružauskas, V., Baskutis, S., & Navickas, V. (2018). Minimizing the trade-off between sustainability and cost effective performance by using autonomous vehicles. Journal of Cleaner Production, 184, 709-717. https://doi.org/10.1016/j.jclepro.2018.02.302
Gunasekaran, A., & Thevarajah, K. (1999). Implications of Computer-Integrated Manufacturing in Small and Medium Enterprises: An Empirical Investigation. The International Journal of Advanced Manufacturing Technology, 15(4), 251-260. https://doi.org/10.1007/s001700050064
Hiovanis Castillo Pantoja, Á. I. H., Roberto Pérez Rodríguez, Ricardo Lorenzo Ávila Rondón. (2021). Aplicación de Fuzzy-AHP y COPRAS en la selección de la mejor alternativa para el maquinado a alta velocidad de estructuras delgadas en aleaciones de aluminio Al 5083 Revista ESPOL, 13. https://doi.org/www.doi.org/10.37785/revista.vXnX.X
Li, Y., Goga, K., Tadei, R., & Terzo, O. (2021). Production Scheduling in Industry 4.0. In Complex, Intelligent and Software Intensive Systems (pp. 355-364). https://doi.org/10.1007/978-3-030-50454-0_34
MAR, O., SANTANA, I. y GULÍN, J. (2017). Competency assessment model for a virtual laboratory system and distance using fuzzy cognitive map. Revista Investigación Operacional, 38, 8.
Nazari, S. S. a. A. (2019). An optimization framework for risk response actions selection using hybrid ACO and FTOPSIS. Scientia Iranica, 26(3), 15. http://scientiairanica.sharif.edu
Pinzone, M., Fantini, P., Fiasché, M., & Taisch, M. (2016). A Multi-horizon, Multi-objective Training Planner: Building the Skills for Manufacturing. In Advances in Neural Networks (pp. 517-526). https://doi.org/10.1007/978-3-319-33747-0_51
Renna, P., & Ambrico, M. (2019). The allocation of improvement programs in a flow shop for single and multi-products: a simulation assessment. International Journal of Agile Systems and Management, 12(3), 228-244. https://doi.org/10.1504/ijasm.2019.101365
Ricardo del Risco Alfonso, R. P.-R., Patricia del Carmen Zambrano Robledo, Marcelino Rivas Santana and Ramón Quiza. (2021a). Optimization of the Cutting Regime in Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear MDPI, 16.
Ricardo del Risco Alfonso, R. P.-R., Patricia del Carmen Zambrano Robledo, Marcelino Rivas Santana and Ramón Quiza. (2021b). Optimization of the Cutting Regime in Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear. Metals, 11, 16.
Sisodiya, M. S. B., V. (2021). An insight: Machining of titanium alloys & associated tool wear. IOP Conference Series: Materials 336 Science and Engineering, 1017 012013.
Slobodan STARČEVIĆ1, N. B., Raimundas JUNEVIČIUS, Viktor SKRICKIJ. (2019). ANALYTICAL HIERARCHY PROCESS METHOD AND DATA ENVELOPMENT ANALYSIS APPLICATION IN TERRAIN VEHICLE SELECTION. TRANSPORT, 34(5), 16. https://doi.org/10.3846/transport.2019.11710
Wu, W. (2017). Grey Relational Analysis Method for Group Decision Making in Credit Risk Analysis. Journal of Mathematics, Science and Technology Education, 13(12), 8. https://doi.org/10.12973/ejmste/77913
Xie, S. Q., & Tu, Y. L. (2006). Rapid one-of-a-kind product development. The International Journal of Advanced Manufacturing Technology, 27(5-6), 421-430. https://doi.org/10.1007/s00170-004-2225-1
Zhou, J., Wang, Q., Tsai, S.-B., Xue, Y., & Dong, W. (2017). How to Evaluate the Job Satisfaction of Development Personnel. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11), 2809-2816. https://doi.org/10.1109/tsmc.2016.2519860
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
Bajo los siguientes términos:
-
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
-
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.