Vol. 6 Núm. 53 (2024): Marzo
Artículos

Optimización multiobjetivo mediante algoritmos evolutivos, para el diseño de desalinizadores solares de humidificación deshumidificación

Geosvanis Boligán Rojas
Universidad de Holguín, Cuba.
Carlos Trinchet Varela
Universidad de Holguín, Cuba.
Roberto Pérez Rodríguez
Universidad de Holguín, Cuba.

Publicado 2024-04-09

Palabras clave

  • optimización,
  • multiobjetivo,
  • CAD,
  • CAE,
  • desalinización

Cómo citar

Boligán Rojas, G., Trinchet Varela, C., & Pérez Rodríguez, R. (2024). Optimización multiobjetivo mediante algoritmos evolutivos, para el diseño de desalinizadores solares de humidificación deshumidificación. Desarrollo Sustentable, Negocios, Emprendimiento Y Educación, 6(53), 53–67. https://doi.org/10.51896/rilcods.v6i53.475

Resumen

Los desalinizadores solares con el ciclo de humidificación deshumidificación (DSCHDH) son una opción viable para suplir el problema de escasez de agua potable en zonas cercanas a las costas de poca demanda y lejos de los sistemas de abasto tradicionales. Esta investigación tiene el propósito de proponer una metodología de diseño mejorada de DSCHDH. El objetivo propuesto, resulta en desarrollar un método que asegura el diseño adecuado mediante el empleo de los sistemas diseño asistido por computadora / análisis de ingeniería asistido por computadora (CAD/CAE) y la Inteligencia Artificial. Se configura una optimización multiobjetivo  mediante algoritmos evolutivos que brindan un conjunto de soluciones eficientes y más económicas. Esto se desarrolla obteniendo del proceso de optimización multiobjetivo los valores termodinámicos óptimos y las dimensiones geométricas correspondientes a estos las cuales se enlazan a un sistema CAD capaz de representar el sistema y que soporta análisis de ingeniería, o sea, un sistema CAD/CAE. El aporte de la investigación se deriva del planteamiento del estudio de este tipo de sistemas en este marco.

Citas

  1. Boligan Rojas, Geosvanis, Avila Rondon, Ricardo L., & Melendez Gurrola, Ana C. (2018). Mechanical Engineering Design Theory Framework for Solar Desalination rocesses: A Review and Meta - Analysis. Iranian Journal of Energy and Environment, 9(2), 137-145. doi: http://10.5829/ijee.2018.09.02.09
  2. Bundschuh, J., Kaczmarczyk, M., Ghaffour, N., & Tomaszewska, B. (2021). State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 508((2021)), 1-26. doi: https://doi.org/10.1016/j.desal.2021.115035
  3. Deb, Kalyanmoy. (2000a). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Lecture Notes in Computer Science, 1917. doi: https://doi.org/10.1007/3-540-45356-3_83
  4. Deb, Kalyanmoy. (2000b). Mechanical Component Design for Multiple Ojectives Using Elitist Non-dominated Sorting GA. doi: https://doi.org/10.1007/3-540-45356-3_84
  5. Deb, Kalyanmoy. (2001a). Constrained Test Problems for Multi-objective Evolutionary Optimization. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_20
  6. Deb, Kalyanmoy. (2001b). Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_5
  7. Deb, Kalyanmoy. (2001c). Multi-Objective Optimization Using Evolutionary Algorithms (Vol. 16): John Wiley & Sons.
  8. Deb, Kalyanmoy. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Ieee transactions on evolutionary computation. doi: https://doi.org/10.1109/4235.996017
  9. Ettouney, H. (2005). Design and analysis of humidification dehumidification desalination process. Desalination, 183(1-3), 341-352. doi: http://dx.doi.org/10.1016/j.desal.2005.03.039
  10. Farid, M. M., & Al-Hajaj, A.W. (1996). Solar desalination with a humidification-dehumidification cycle. Desalination, 106(1-3), 427-429. doi: http://dx.doi.org/10.1016/S0011-9164(96)00141-5
  11. Finger, Susan, & Dixon, John R. (1989a). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-BAsed Models of Design Processes. Research in Mechanical Engineering Design, 1(1), 51-67. doi: 10.1007/BF01580003
  12. Finger, Susan, & Dixon, John R. (1989b). A Review of Research in Mechanical Engineering Design. Part II. Representations, Analysis, and Design for the Life Cycle. Research in Mechanical Engineering Design, 1(2), 121-137. doi: 10.1007/BF01580205
  13. Jaluria, Yogesh. (2008). Design and Optimization of Thermal Systems (Second Edition): Taylor & Francis Group.
  14. Kasaeian, A., Babaei, S., Jahanpanah, M., Sarrafha, H., Alsagri, A. S., Ghaffaria, S., & Yan, Wei-Mon. (2019). Solar humidification-dehumidification desalination systems: A critical review. Energy Conversion and Management, 201((2019)), 1-26. doi: https://doi.org/10.1016/j.enconman.2019.112129
  15. Khedmati, Amir Reza, & Shafii, Mohammad Behshad. (2020). Multi-Objective Optimization of the Humidification-Dehumidification Desalination System for Productivity and Size. Journal of Renewable Energy and Environment, 7(1), 1-11. doi: https://dx.doi.org/10.30501/jree.2020.104062
  16. Kloppers, Johannes C., & Krӧger, Detlev G. (2005). A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers. International Journal of Heat and Mass Transfer, 48(3-5), 765–777. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004
  17. Li, W. D., Ong, S. K., Fuh, J. Y.H., Wong, Y. S., Lu, Y. Q. , & Nee, A. Y.C. . (2004). Feature-based design in a distributed and collaborative environment. Computer-Aided Design, 36(9), 775–797. doi: 10.1016/j.cad.2003.09.005
  18. Lienhard V, John H. (2019). Humidification-Dehumidification Desalination. Desalination: Water from Water, 387-446. doi: https://doi.org/10.1002/9781119407874.ch9
  19. Mistry, Karan H., Mitsos, Alexander, & Lienhard V, John H. (2011). Optimal operating conditions and configurations for humidificationedehumidification desalination cycles. International Journal of Thermal Sciences, 50(5), 779-789. doi: http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.013
  20. Mohamed, A. S. A., Ahmed, M. Salem, & Shahdy, Abanob.G. (2020). Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique. Renewable Energy, 152((2020)), 823-834. doi: https://doi.org/10.1016/j.renene.2020.01.116
  21. Narayan, G. Prakash, John, Maximus G. St., Zubair, Syed M., & Lienhard, John H., V. (2013). Thermal design of the humidification dehumidification desalination system: An experimental investigation. International Journal of Heat and Mass Transfer, 58(2013), 740–748. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.035
  22. Narayan, G. Prakash, Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. . (2010). Thermodynamic analysis of humidifi cation dehumidifi cation desalination cycles. Desalination and Water Treatment, 16((1-3)), 339-353. doi: http://dx.doi.org/10.5004/dwt.2010.1078
  23. Nayar, Kishor G., Sharqawy, Mostafa H., Banchik, Leonardo D., & Lienhard V, John H. (2016). Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination, 390((2016)), 1-24. doi: http://dx.doi.org/10.1016/j.desal.2016.02.024
  24. Nayar, Kishor G., Sharqawy, Mostafa H., & Lienhard V, J.H. (2016). SEAWATER THERMOPHYSICAL PROPERTIES LIBRARY. Massachusetts: MIT.
  25. Pahl, G., & Beitz, W. (1998). Engineering Design A Systematic Approach: Springer.
  26. Perez Galindo, Jose A., Payan Rodriguez, Luis A., & Martin Dominguez, Ignacio R. (2007). LB-07-047: Thermodynamic Properties for Saturated Air, an Engineering Correlation. ASHRAE Transactions, 113(2), 449-456. doi: https://www.techstreet.com/standards/lb-07-047-thermodynamic-properties-for-saturated-air-an-engineering-correlation?product_id=1712682
  27. Rafigh, M., Mirzaeian, M., Najafi, B., Rinaldi, F., & Marchesi, R. (2017). Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit. 35th UIT Heat Transfer Conference (UIT2017), 923(2017), 012038. doi: https://doi.org/10.1088/1742-6596/923/1/012038
  28. Salomons, O. W., van Houten, F. J. A. M., & Kals, H. J. J. (1993). Review of research in feature-based design. Journal of Manufacturing Systems, 12(2), 113-132.
  29. Sharqawy, Mostafa H., Antar, Mohamed A., Zubair, Syed M., & Elbashir, Abubaker M. (2014). Optimumthermal design of humidification dehumidification desalination systems. Desalination, 349((2014)), 10–21. doi: https://doi.org/10.1016/j.desal.2014.06.016
  30. Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. (2010). Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16((1-3)), 354-380. doi: https://doi.org/10.5004/dwt.2010.1079
  31. Soufari, SM., Zamen, M., & Amidpour, M. (2009). Performance optimization of humidification-dehumidification using mathematical programming. Desalination, 237(1–3), 305–317. doi: https://doi.org/10.1016/j.desal.2008.01.024
  32. Triboix, Alain. (2009). Exact and approximate formulas for cross flow heat exchangers with unmixed fluid International Communications in Heat and Mass Transfer, 36((2009)), 121–124. doi: https://doi.org/10.1016/j.icheatmasstransfer.2008.10.012
  33. Tseng, Hwai-En, Wang, Wen-Pai, & Shih, Hsun-Yi. (2007). Using memetic algorithms with guided local search to solve assembly sequence planning. Expert Systems with Applications, 33.
  34. Zamen, M., Amidpourb, M., & Soufari, S. M. (2009). Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination, 239(1-3), 92-99. doi: http://dx.doi.org/10.1016/j.desal.2008.03.009
  35. Zhang, Yin, Zhang, Huan, Zheng, Wandong, You, Shijun, & Wang, Yaran. (2019). Optimal operating conditions of a hybrid humidification-dehumidification and heat pump desalination system with multi-objective particle swarm algorithm. Desalination, 468(2019), 114076. doi: https://doi.org/10.1016/j.desal.2019.114076
  36. Zhou, Shihe. (2021). Parametric study and multi-objective optimization of a combined cooling, desalination and power system. Desalination and Water Treatment. doi: https://doi.org/10.5004/dwt.2021.26994