Multi-objective optimization using evolutionary algorithms, for the design of solar humidification dehumidification desalinators
Published 2024-04-09
Keywords
- optimization,
- multi-objective,
- CAD,
- CAE,
- desalinization
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
Solar desalination systems with the humidification-dehumidification cycle (DSCHDH) are a viable option to solve the problem of scarcity of drinking water in places near the coast with little demand and far from traditional supply systems. This research has the purpose of proposing an improved design methodology of DSCHDH. The proposed objective is to develop a method that ensures adequate design through the use of computer-aided design / computer-aided engineering analysis (CAD/CAE) systems and Artificial Intelligence. A multi-objective optimization is configured using evolutionary algorithms that provide a set of efficient and cheaper solutions. This is developed by obtaining from the multi-objective optimization process the optimal thermodynamic values and the geometric dimensions corresponding to these, which are linked to a CAD system capable of representing the system and supporting engineering analysis, that is, a CAD/CAE system. The contribution of the research derives from the approach of the study of this type of systems in this framework.
References
- Boligan Rojas, Geosvanis, Avila Rondon, Ricardo L., & Melendez Gurrola, Ana C. (2018). Mechanical Engineering Design Theory Framework for Solar Desalination rocesses: A Review and Meta - Analysis. Iranian Journal of Energy and Environment, 9(2), 137-145. doi: http://10.5829/ijee.2018.09.02.09
- Bundschuh, J., Kaczmarczyk, M., Ghaffour, N., & Tomaszewska, B. (2021). State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 508((2021)), 1-26. doi: https://doi.org/10.1016/j.desal.2021.115035
- Deb, Kalyanmoy. (2000a). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Lecture Notes in Computer Science, 1917. doi: https://doi.org/10.1007/3-540-45356-3_83
- Deb, Kalyanmoy. (2000b). Mechanical Component Design for Multiple Ojectives Using Elitist Non-dominated Sorting GA. doi: https://doi.org/10.1007/3-540-45356-3_84
- Deb, Kalyanmoy. (2001a). Constrained Test Problems for Multi-objective Evolutionary Optimization. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_20
- Deb, Kalyanmoy. (2001b). Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_5
- Deb, Kalyanmoy. (2001c). Multi-Objective Optimization Using Evolutionary Algorithms (Vol. 16): John Wiley & Sons.
- Deb, Kalyanmoy. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Ieee transactions on evolutionary computation. doi: https://doi.org/10.1109/4235.996017
- Ettouney, H. (2005). Design and analysis of humidification dehumidification desalination process. Desalination, 183(1-3), 341-352. doi: http://dx.doi.org/10.1016/j.desal.2005.03.039
- Farid, M. M., & Al-Hajaj, A.W. (1996). Solar desalination with a humidification-dehumidification cycle. Desalination, 106(1-3), 427-429. doi: http://dx.doi.org/10.1016/S0011-9164(96)00141-5
- Finger, Susan, & Dixon, John R. (1989a). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-BAsed Models of Design Processes. Research in Mechanical Engineering Design, 1(1), 51-67. doi: 10.1007/BF01580003
- Finger, Susan, & Dixon, John R. (1989b). A Review of Research in Mechanical Engineering Design. Part II. Representations, Analysis, and Design for the Life Cycle. Research in Mechanical Engineering Design, 1(2), 121-137. doi: 10.1007/BF01580205
- Jaluria, Yogesh. (2008). Design and Optimization of Thermal Systems (Second Edition): Taylor & Francis Group.
- Kasaeian, A., Babaei, S., Jahanpanah, M., Sarrafha, H., Alsagri, A. S., Ghaffaria, S., & Yan, Wei-Mon. (2019). Solar humidification-dehumidification desalination systems: A critical review. Energy Conversion and Management, 201((2019)), 1-26. doi: https://doi.org/10.1016/j.enconman.2019.112129
- Khedmati, Amir Reza, & Shafii, Mohammad Behshad. (2020). Multi-Objective Optimization of the Humidification-Dehumidification Desalination System for Productivity and Size. Journal of Renewable Energy and Environment, 7(1), 1-11. doi: https://dx.doi.org/10.30501/jree.2020.104062
- Kloppers, Johannes C., & Krӧger, Detlev G. (2005). A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers. International Journal of Heat and Mass Transfer, 48(3-5), 765–777. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004
- Li, W. D., Ong, S. K., Fuh, J. Y.H., Wong, Y. S., Lu, Y. Q. , & Nee, A. Y.C. . (2004). Feature-based design in a distributed and collaborative environment. Computer-Aided Design, 36(9), 775–797. doi: 10.1016/j.cad.2003.09.005
- Lienhard V, John H. (2019). Humidification-Dehumidification Desalination. Desalination: Water from Water, 387-446. doi: https://doi.org/10.1002/9781119407874.ch9
- Mistry, Karan H., Mitsos, Alexander, & Lienhard V, John H. (2011). Optimal operating conditions and configurations for humidificationedehumidification desalination cycles. International Journal of Thermal Sciences, 50(5), 779-789. doi: http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.013
- Mohamed, A. S. A., Ahmed, M. Salem, & Shahdy, Abanob.G. (2020). Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique. Renewable Energy, 152((2020)), 823-834. doi: https://doi.org/10.1016/j.renene.2020.01.116
- Narayan, G. Prakash, John, Maximus G. St., Zubair, Syed M., & Lienhard, John H., V. (2013). Thermal design of the humidification dehumidification desalination system: An experimental investigation. International Journal of Heat and Mass Transfer, 58(2013), 740–748. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.035
- Narayan, G. Prakash, Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. . (2010). Thermodynamic analysis of humidifi cation dehumidifi cation desalination cycles. Desalination and Water Treatment, 16((1-3)), 339-353. doi: http://dx.doi.org/10.5004/dwt.2010.1078
- Nayar, Kishor G., Sharqawy, Mostafa H., Banchik, Leonardo D., & Lienhard V, John H. (2016). Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination, 390((2016)), 1-24. doi: http://dx.doi.org/10.1016/j.desal.2016.02.024
- Nayar, Kishor G., Sharqawy, Mostafa H., & Lienhard V, J.H. (2016). SEAWATER THERMOPHYSICAL PROPERTIES LIBRARY. Massachusetts: MIT.
- Pahl, G., & Beitz, W. (1998). Engineering Design A Systematic Approach: Springer.
- Perez Galindo, Jose A., Payan Rodriguez, Luis A., & Martin Dominguez, Ignacio R. (2007). LB-07-047: Thermodynamic Properties for Saturated Air, an Engineering Correlation. ASHRAE Transactions, 113(2), 449-456. doi: https://www.techstreet.com/standards/lb-07-047-thermodynamic-properties-for-saturated-air-an-engineering-correlation?product_id=1712682
- Rafigh, M., Mirzaeian, M., Najafi, B., Rinaldi, F., & Marchesi, R. (2017). Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit. 35th UIT Heat Transfer Conference (UIT2017), 923(2017), 012038. doi: https://doi.org/10.1088/1742-6596/923/1/012038
- Salomons, O. W., van Houten, F. J. A. M., & Kals, H. J. J. (1993). Review of research in feature-based design. Journal of Manufacturing Systems, 12(2), 113-132.
- Sharqawy, Mostafa H., Antar, Mohamed A., Zubair, Syed M., & Elbashir, Abubaker M. (2014). Optimumthermal design of humidification dehumidification desalination systems. Desalination, 349((2014)), 10–21. doi: https://doi.org/10.1016/j.desal.2014.06.016
- Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. (2010). Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16((1-3)), 354-380. doi: https://doi.org/10.5004/dwt.2010.1079
- Soufari, SM., Zamen, M., & Amidpour, M. (2009). Performance optimization of humidification-dehumidification using mathematical programming. Desalination, 237(1–3), 305–317. doi: https://doi.org/10.1016/j.desal.2008.01.024
- Triboix, Alain. (2009). Exact and approximate formulas for cross flow heat exchangers with unmixed fluid International Communications in Heat and Mass Transfer, 36((2009)), 121–124. doi: https://doi.org/10.1016/j.icheatmasstransfer.2008.10.012
- Tseng, Hwai-En, Wang, Wen-Pai, & Shih, Hsun-Yi. (2007). Using memetic algorithms with guided local search to solve assembly sequence planning. Expert Systems with Applications, 33.
- Zamen, M., Amidpourb, M., & Soufari, S. M. (2009). Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination, 239(1-3), 92-99. doi: http://dx.doi.org/10.1016/j.desal.2008.03.009
- Zhang, Yin, Zhang, Huan, Zheng, Wandong, You, Shijun, & Wang, Yaran. (2019). Optimal operating conditions of a hybrid humidification-dehumidification and heat pump desalination system with multi-objective particle swarm algorithm. Desalination, 468(2019), 114076. doi: https://doi.org/10.1016/j.desal.2019.114076
- Zhou, Shihe. (2021). Parametric study and multi-objective optimization of a combined cooling, desalination and power system. Desalination and Water Treatment. doi: https://doi.org/10.5004/dwt.2021.26994