Multi-objective optimization using evolutionary algorithms, for the design of solar humidification dehumidification desalinators

Authors

  • Geosvanis Boligán Rojas Universidad de Holguín, Cuba.
  • Carlos Trinchet Varela Universidad de Holguín, Cuba.
  • Roberto Pérez Rodríguez Universidad de Holguín, Cuba.

DOI:

https://doi.org/10.51896/rilcods.v6i53.475

Keywords:

optimization, multi-objective, CAD, CAE, desalinization

Abstract

Solar desalination systems with the humidification-dehumidification cycle (DSCHDH) are a viable option to solve the problem of scarcity of drinking water in places near the coast with little demand and far from traditional supply systems. This research has the purpose of proposing an improved design methodology of DSCHDH. The proposed objective is to develop a method that ensures adequate design through the use of computer-aided design / computer-aided engineering analysis (CAD/CAE) systems and Artificial Intelligence. A multi-objective optimization is configured using evolutionary algorithms that provide a set of efficient and cheaper solutions. This is developed by obtaining from the multi-objective optimization process the optimal thermodynamic values and the geometric dimensions corresponding to these, which are linked to a CAD system capable of representing the system and supporting engineering analysis, that is, a CAD/CAE system. The contribution of the research derives from the approach of the study of this type of systems in this framework.

References

Boligan Rojas, Geosvanis, Avila Rondon, Ricardo L., & Melendez Gurrola, Ana C. (2018). Mechanical Engineering Design Theory Framework for Solar Desalination rocesses: A Review and Meta - Analysis. Iranian Journal of Energy and Environment, 9(2), 137-145. doi: http://10.5829/ijee.2018.09.02.09

Bundschuh, J., Kaczmarczyk, M., Ghaffour, N., & Tomaszewska, B. (2021). State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 508((2021)), 1-26. doi: https://doi.org/10.1016/j.desal.2021.115035

Deb, Kalyanmoy. (2000a). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Lecture Notes in Computer Science, 1917. doi: https://doi.org/10.1007/3-540-45356-3_83

Deb, Kalyanmoy. (2000b). Mechanical Component Design for Multiple Ojectives Using Elitist Non-dominated Sorting GA. doi: https://doi.org/10.1007/3-540-45356-3_84

Deb, Kalyanmoy. (2001a). Constrained Test Problems for Multi-objective Evolutionary Optimization. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_20

Deb, Kalyanmoy. (2001b). Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. Lecture Notes in Computer Science, 1993. doi: https://doi.org/10.1007/3-540-44719-9_5

Deb, Kalyanmoy. (2001c). Multi-Objective Optimization Using Evolutionary Algorithms (Vol. 16): John Wiley & Sons.

Deb, Kalyanmoy. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Ieee transactions on evolutionary computation. doi: https://doi.org/10.1109/4235.996017

Ettouney, H. (2005). Design and analysis of humidification dehumidification desalination process. Desalination, 183(1-3), 341-352. doi: http://dx.doi.org/10.1016/j.desal.2005.03.039

Farid, M. M., & Al-Hajaj, A.W. (1996). Solar desalination with a humidification-dehumidification cycle. Desalination, 106(1-3), 427-429. doi: http://dx.doi.org/10.1016/S0011-9164(96)00141-5

Finger, Susan, & Dixon, John R. (1989a). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-BAsed Models of Design Processes. Research in Mechanical Engineering Design, 1(1), 51-67. doi: 10.1007/BF01580003

Finger, Susan, & Dixon, John R. (1989b). A Review of Research in Mechanical Engineering Design. Part II. Representations, Analysis, and Design for the Life Cycle. Research in Mechanical Engineering Design, 1(2), 121-137. doi: 10.1007/BF01580205

Jaluria, Yogesh. (2008). Design and Optimization of Thermal Systems (Second Edition): Taylor & Francis Group.

Kasaeian, A., Babaei, S., Jahanpanah, M., Sarrafha, H., Alsagri, A. S., Ghaffaria, S., & Yan, Wei-Mon. (2019). Solar humidification-dehumidification desalination systems: A critical review. Energy Conversion and Management, 201((2019)), 1-26. doi: https://doi.org/10.1016/j.enconman.2019.112129

Khedmati, Amir Reza, & Shafii, Mohammad Behshad. (2020). Multi-Objective Optimization of the Humidification-Dehumidification Desalination System for Productivity and Size. Journal of Renewable Energy and Environment, 7(1), 1-11. doi: https://dx.doi.org/10.30501/jree.2020.104062

Kloppers, Johannes C., & Krӧger, Detlev G. (2005). A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers. International Journal of Heat and Mass Transfer, 48(3-5), 765–777. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004

Li, W. D., Ong, S. K., Fuh, J. Y.H., Wong, Y. S., Lu, Y. Q. , & Nee, A. Y.C. . (2004). Feature-based design in a distributed and collaborative environment. Computer-Aided Design, 36(9), 775–797. doi: 10.1016/j.cad.2003.09.005

Lienhard V, John H. (2019). Humidification-Dehumidification Desalination. Desalination: Water from Water, 387-446. doi: https://doi.org/10.1002/9781119407874.ch9

Mistry, Karan H., Mitsos, Alexander, & Lienhard V, John H. (2011). Optimal operating conditions and configurations for humidificationedehumidification desalination cycles. International Journal of Thermal Sciences, 50(5), 779-789. doi: http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.013

Mohamed, A. S. A., Ahmed, M. Salem, & Shahdy, Abanob.G. (2020). Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique. Renewable Energy, 152((2020)), 823-834. doi: https://doi.org/10.1016/j.renene.2020.01.116

Narayan, G. Prakash, John, Maximus G. St., Zubair, Syed M., & Lienhard, John H., V. (2013). Thermal design of the humidification dehumidification desalination system: An experimental investigation. International Journal of Heat and Mass Transfer, 58(2013), 740–748. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.035

Narayan, G. Prakash, Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. . (2010). Thermodynamic analysis of humidifi cation dehumidifi cation desalination cycles. Desalination and Water Treatment, 16((1-3)), 339-353. doi: http://dx.doi.org/10.5004/dwt.2010.1078

Nayar, Kishor G., Sharqawy, Mostafa H., Banchik, Leonardo D., & Lienhard V, John H. (2016). Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination, 390((2016)), 1-24. doi: http://dx.doi.org/10.1016/j.desal.2016.02.024

Nayar, Kishor G., Sharqawy, Mostafa H., & Lienhard V, J.H. (2016). SEAWATER THERMOPHYSICAL PROPERTIES LIBRARY. Massachusetts: MIT.

Pahl, G., & Beitz, W. (1998). Engineering Design A Systematic Approach: Springer.

Perez Galindo, Jose A., Payan Rodriguez, Luis A., & Martin Dominguez, Ignacio R. (2007). LB-07-047: Thermodynamic Properties for Saturated Air, an Engineering Correlation. ASHRAE Transactions, 113(2), 449-456. doi: https://www.techstreet.com/standards/lb-07-047-thermodynamic-properties-for-saturated-air-an-engineering-correlation?product_id=1712682

Rafigh, M., Mirzaeian, M., Najafi, B., Rinaldi, F., & Marchesi, R. (2017). Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit. 35th UIT Heat Transfer Conference (UIT2017), 923(2017), 012038. doi: https://doi.org/10.1088/1742-6596/923/1/012038

Salomons, O. W., van Houten, F. J. A. M., & Kals, H. J. J. (1993). Review of research in feature-based design. Journal of Manufacturing Systems, 12(2), 113-132.

Sharqawy, Mostafa H., Antar, Mohamed A., Zubair, Syed M., & Elbashir, Abubaker M. (2014). Optimumthermal design of humidification dehumidification desalination systems. Desalination, 349((2014)), 10–21. doi: https://doi.org/10.1016/j.desal.2014.06.016

Sharqawy, Mostafa H., Lienhard V, John H., & Zubair, Syed M. (2010). Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16((1-3)), 354-380. doi: https://doi.org/10.5004/dwt.2010.1079

Soufari, SM., Zamen, M., & Amidpour, M. (2009). Performance optimization of humidification-dehumidification using mathematical programming. Desalination, 237(1–3), 305–317. doi: https://doi.org/10.1016/j.desal.2008.01.024

Triboix, Alain. (2009). Exact and approximate formulas for cross flow heat exchangers with unmixed fluid International Communications in Heat and Mass Transfer, 36((2009)), 121–124. doi: https://doi.org/10.1016/j.icheatmasstransfer.2008.10.012

Tseng, Hwai-En, Wang, Wen-Pai, & Shih, Hsun-Yi. (2007). Using memetic algorithms with guided local search to solve assembly sequence planning. Expert Systems with Applications, 33.

Zamen, M., Amidpourb, M., & Soufari, S. M. (2009). Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination, 239(1-3), 92-99. doi: http://dx.doi.org/10.1016/j.desal.2008.03.009

Zhang, Yin, Zhang, Huan, Zheng, Wandong, You, Shijun, & Wang, Yaran. (2019). Optimal operating conditions of a hybrid humidification-dehumidification and heat pump desalination system with multi-objective particle swarm algorithm. Desalination, 468(2019), 114076. doi: https://doi.org/10.1016/j.desal.2019.114076

Zhou, Shihe. (2021). Parametric study and multi-objective optimization of a combined cooling, desalination and power system. Desalination and Water Treatment. doi: https://doi.org/10.5004/dwt.2021.26994

Published

2024-04-09

How to Cite

Boligán Rojas, G., Trinchet Varela, C., & Pérez Rodríguez, R. (2024). Multi-objective optimization using evolutionary algorithms, for the design of solar humidification dehumidification desalinators. Desarrollo Sustentable, Negocios, Emprendimiento Y Educación, 6(53), 53–67. https://doi.org/10.51896/rilcods.v6i53.475

Issue

Section

Artículos