Transformation of fault trees into bayesian networks:

Optimization of maintenance in engineering systems

Authors

  • Raúl Torres Sainz Universidad de Holguín, Cuba.
  • Lidia María Pérez Vallejo Universidad de Holguín, Cuba.
  • Carlos Alberto Trinchet Varela Universidad de Holguín, Cuba.

DOI:

https://doi.org/10.51896/rilcods.v6i52.445

Keywords:

Maintenance, Fault tree, Bayesian networks, Failure diagnosis and prognosis

Abstract

Failure diagnosis and prognosis in industry is crucial to avoid unplanned outages, optimize efficiency and reduce maintenance costs. The use of Bayesian based networks allows an accurate and probabilistic evaluation, improving decision making and strategic maintenance planning. The objective of this research lies in the presentation of a detailed methodology for the accurate and systematic transformation of a fault tree into a Bayesian network, with the aim of improving the ability to diagnose and forecast failures. To achieve this objective, the fault tree of a wind turbine was constructed using historical data and expert consultation and transformed into a Bayesian network using the proposed method. As results, the main advantages of the Bayesian network with respect to the fault tree are presented and the most critical sets and combinations of faults for the system are obtained. The research concludes that the transformation allows a more accurate and detailed evaluation of the failures in the wind turbine. The Bayesian network considers the probabilistic relationships between events and allows obtaining a more accurate estimation of the failure probability, which facilitates the diagnosis. As future research, the integration of the Bayesian network in intelligent maintenance systems and decision support systems is proposed. This will allow the automation of maintenance planning and the optimization of resources in a more effective way.

References

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliability Engineering & System Safety, 71(3), 249-260. https://doi.org/https://doi.org/10.1016/S0951-8320(00)00077-6

Jin, H., & Liu, C. (2017, 28-30 May 2017). Reliability analysis of wind turbine gear box based on fault tree and Bayesian network. 2017 29th Chinese Control And Decision Conference (CCDC),

Kabir, S., & Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 115, 154-175. https://doi.org/10.1016/j.ssci.2019.02.009

Li, H., Guedes Soares, C., & Huang, H.-Z. (2020). Reliability Analysis of a Floating Offshore Wind Turbine using Bayesian Networks. Ocean Engineering, 217, 107827. https://doi.org/10.1016/j.oceaneng.2020.107827

Liu, W. (2019). Intelligent fault diagnosis of wind turbines using multi-dimensional kernel domain spectrum technique [Article]. Measurement: Journal of the International Measurement Confederation, 133, 303-309. https://doi.org/10.1016/j.measurement.2018.10.027

Rodríguez-López, M. Á. (2015). Metodología para sistemas inteligentes de detección de mal funcionamiento en equipos Universidad de La Rioja]. España. https://dialnet.unirioja.es/servlet/tesis?codigo=46488

Torres Valle, A., & Martínez Martín, E. (2016). Evaluación de confiabilidad tecnológica del parque aerogenerador de Gibara 2 %J Ingeniería Energética. 37, 25-34. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59012016000100004&nrm=iso

Vachtsevanos, G., & Zahiri, F. (2022). Prognosis: Challenges, Precepts, Myths and Applications. IEEE Aerospace Conference Proceedings,

Villar Ledo, L., Díaz Concepción, A., Infante Abreu, M. B., Vilalta Alonso, J. A., Alfonso Álvarez, A., & Rodríguez Soto, Á. A. (2022). ANALYSIS OF TOOLS FOR THE DIAGNOSIS OF MAINTENANCE MANAGEMENT [Article]. Universidad y Sociedad, 14(1), 493-510. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126333566&partnerID=40&md5=c2fa336146a2130db8f410adffaaa786

Wang, K. S. (2014). Key Techniques in Intelligent Predictive Maintenance (IPdM) – A Framework of Intelligent Faults Diagnosis and Prognosis System (IFDaPS). Advanced Materials Research, 1039, 490-505. https://doi.org/10.4028/www.scientific.net/AMR.1039.490

Zhou, H., Chen, W., Shen, C., Cheng, L., & Xia, M. (2022). Intelligent machine fault diagnosis with effective denoising using EEMD-ICA- FuzzyEn and CNN [Article]. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2122621

Published

2024-02-23

How to Cite

Torres Sainz, R., Pérez Vallejo , L. M., & Trinchet Varela , C. A. (2024). Transformation of fault trees into bayesian networks: : Optimization of maintenance in engineering systems. Desarrollo Sustentable, Negocios, Emprendimiento Y Educación, 6(52), 69–80. https://doi.org/10.51896/rilcods.v6i52.445

Issue

Section

Artículos